Lyapunov and Riccati inequalities

This is a note on Lyapunov and Riccati inequalities.

References:

Lyapunov inequalities vs. spectral conditions

Let \(A \in \mathbb{C}^{m \times n}\). The spectral abscissa of \(A\) is defined by

\[ \alpha(A) := \max \{\mathrm{Re}[\lambda] : \text{\(\lambda\) is an eigenvalue of \(A\)}\}. \]

Theorem (strict Lyapunov inequality).
There exists a Hermitian matrix \(P \in \mathcal{H}^n\) such that \(P \succ 0\) and

\[ A^*P + PA \prec 0 \]

if and only if \(\alpha(A) < 0\).

Remark: The set of Hurwitz matrices is not convex, whereas Lyapunov inequalities can be solved by SDP. More restrictive classes can be convex, e.g., the set of square matrices with negative logarithmic norms.

Theorem (nonstrict Lyapunov inequality).
There exists a nonzero Hermitian matrix \(P \in \mathcal{H}^n\) such that \(P \succeq 0\) and

\[ A^*P + PA \preceq 0 \]

if and only if \(\alpha(A) \le 0\).

Connection with Lyapunov stability

If a matrix \(A \in \mathbb{R}^{n \times n}\) is Hurwitz, then the Lyapunov equation

\[ A^\mathsf{T}P + PA + Q = 0, \quad Q = Q^\mathsf{T} \succ 0, \]

is feasible from the strict version of the above theorems. The unique solution is given by

\[ P = \int_0^\infty \mathrm{e}^{tA^\mathsf{T}} Q \mathrm{e}^{tA} \,\mathrm{d}t. \]

Let us define a quadratic form \(V \colon \mathbb{R}^n \to \mathbb{R}\) by

\[ V(x) = x^*Px. \]

This is a (strict) Lyapunov function for the linear ODE \(\dot{x}(t) = Ax(t)\).

Connection with state feedback stabilization

Consider the control system described by

\[ \dot{x}(t) = Ax(t) + Bu(t). \]

In this case, there exists a matrix \(K \in \mathbb{R}^{n \times m}\) such that \(A + BK\) is Hurwitz if and only if there exist a symmetric matrix \(X \in \mathcal{S}^{n \times n}\) and a matrix \(U \in \mathbb{R}^{n \times m}\) such that \(X \succ 0\) and

\[ \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X \\ U \end{bmatrix} + \begin{bmatrix} X & U^\mathsf{T} \end{bmatrix} \begin{bmatrix} A^\mathsf{T} \\ B^\mathsf{T} \end{bmatrix} \prec 0. \]

The stabilizing gain is determined by \(K = UX^{-1}\). Moreover, the positive-definite matrix \(X\) satisfies

\[ X (A + BK)^\mathsf{T} + (A + BK) X \prec 0. \]

This is known as a dual Lyapunov inequality.

Riccati inequalities vs. frequency conditions

Let \(A \in \mathbb{C}^{m \times n}\), \(B \in \mathbb{C}^{n \times m}\), and \(M \in \mathcal{H}^{n + m}\). Let \(M\) be partitioned as

\[ M = \begin{bmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{bmatrix}. \]

Theorem (strict Riccati inequality).
Suppose that \(M_{22} \prec 0\). There exists a Hermitian matrix \(P \in \mathcal{H}^n\) such that

\[ \begin{bmatrix} A^*P + PA & PB \\ B^*P & 0 \end{bmatrix} + M \prec 0 \]

if and only if

\[ (\mathrm{j} \omega I - A) x = Bu \implies \begin{bmatrix} x \\ u \end{bmatrix}^* M \begin{bmatrix} x \\ u \end{bmatrix} < 0 \]

for all \(\omega \in \mathbb{R}\) and all \((x,u) \in \mathbb{C}^{n + m} \setminus \{0\}\).

Remark: We need not consider \(\omega = \infty\), which means that \((\mathrm{j} \omega I - A) x = Bu\) holds with \(x = 0\) and \(u\) arbitrary. If \(x = 0\), then the condition is automatically satisfied because we have assumed that \(M_{22} \prec 0\). This assumption is necessary for feasibility of the Riccati inequality.

Remark: Using the Schur complement, we can transform the Riccati inequality into

\[ A^*P + PA + M_{11} - (PB + M_{12}) M_{22}^{-1} (PB + M_{12})^* \prec 0, \quad M_{22} \prec 0. \]

Theorem (nonstrict Riccati inequality).
Suppose that \(M_{22} \preceq 0\) and that all uncontrollable modes of \((A,B)\) are nondefective and lie on the imaginary axis. There exists a Hermitian matrix \(P \in \mathcal{H}^n\) such that

\[ \begin{bmatrix} A^*P + PA & PB \\ B^*P & 0 \end{bmatrix} + M \preceq 0 \]

if and only if

\[ (\mathrm{j} \omega I - A) x = Bu \implies \begin{bmatrix} x \\ u \end{bmatrix}^* M \begin{bmatrix} x \\ u \end{bmatrix} \le 0 \]

for all \(\omega \in \mathbb{R}\) and all \((x,u) \in \mathbb{C}^{n + m}\).

Connection with optimal control

Consider the infinite-horizon LQR problem:

\[ \begin{aligned} \mathtt{minimize}& \quad \int_0^\infty [x(t)^\mathsf{T}Qx(t) + u(t)^\mathsf{T}Ru(t) + 2x(t)^\mathsf{T}Su(t)] \,\mathrm{d}t \\ \mathtt{subject\ to}& \quad \dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0, \quad \lim_{t \to \infty} x(t) = 0 \end{aligned} \]

Note that we do not impose any assumptions on \(Q\), \(R\), and \(S\) except that \(Q\) and \(R\) are symmetric. We define the optimal cost

\[ V^+(x_0) := \inf_{u \in \mathcal{L}^2_\mathrm{loc}[0,\infty)} \left\{ \int_0^\infty [x(t)^\mathsf{T}Qx(t) + u(t)^\mathsf{T}Ru(t) + 2x(t)^\mathsf{T}Su(t)] \,\mathrm{d}t : x(0) = x_0,\ \lim_{t \to \infty} x(t) = 0 \right\}. \]

Now, we assume that \((A,B)\) is controllable. This assumption implies that \(V^+(x_0) < \infty\) because we can take a \(u\) such that \((x,u) \in \mathcal{L}^2[0,\infty)\). Moreover, \(V^+(x_0) > - \infty\) if and only if there exists a symmetric matrix \(P \in \mathcal{S}^n\) such that

\[ \begin{bmatrix} A^\mathsf{T}P + PA & PB \\ B^\mathsf{T}P & 0 \end{bmatrix} + \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \succeq 0. \]

This is known as a reversed Riccati inequality.

Connection with dissipative systems

Consider the LTI system described by

\[ \dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t). \]

Let the supply rate be given by

\[ w(u,y) = \begin{bmatrix} y \\ u \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix}. \]

Suppose that there exists a symmetric matrix \(P \in \mathcal{S}^n\) such that \(P \succeq 0\) and

\[ \begin{bmatrix} A^\mathsf{T}P + PA & PB \\ B^\mathsf{T}P & 0 \end{bmatrix} - \begin{bmatrix} C & D \\ 0 & I \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} C & D \\ 0 & I \end{bmatrix} \preceq 0. \]

Then, the LTI system has the storage function \(W(x) = x^\mathsf{T}Px\) for which the dissipation inequality

\[ W(x(t_1)) \le W(x(t_0)) + \int_{t_0}^{t_1} w(u(\tau),y(\tau)) \,\mathrm{d}\tau \]

is satisfied for all \(t_0,t_1 \ge 0\) with \(t_0 \le t_1\) and all \((x,u,y) \in \mathfrak{B}\).